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On Computing Isomorphisms of Equation Orders 

By M. Pohst 

Dedicated to Professor D. Shanks on his 70th birthday 

Abstract. A number-geometric method for computing isomorphisms of algebraic number 
fields (respectively, Z-orders of such fields) is developed. Its main advantage is its easy 
implementation and moderate computation time. 

1. Introduction. In this paper we suggest a number-geometric method for deciding 
whether for algebraic integers p, a the orders Z[p] and Z[a] are isomorphic. In case 
the answer is affirmative, an isomorphism is constructed explicitly. The only 
assumption is that the minimal polynomials mp(t), ma(t) E Z[t] are known. 

Usually this problem is attacked by factoring ma(t) in Q(p)[t] and testing 
whether ma(t) has a linear factor in Z[p][t]. Though this procedure seems to be 
somewhat lengthy, it is polynomial time in the input data [3]. 

For the number-geometric method a polynomial time behavior is not always 
guaranteed [2]. But usually applications are made to polynomials mp, ma of small 
degree n (say, n < 20) and not too large coefficients, so that O-estimates are not 
very meaningful anyway. (Actually, the computation time was very moderate in 
typical examples of Section 3.) Moreover, the number-geometric method is by far 
easier to implement than the factorization procedure. Hence, it will be of help to all 
number theoreticians who have no access to a factorization procedure for polynomi- 
als over number fields. 

2. The Method. Let F = 0(p) be an algebraic number field of degree n = deg(mp), 
where the minimal polynomial mp(t) of p is in Z[t]. For /3 E F we denote the 
corresponding conjugates by,/('), . ., 8(n) and set 

Tn (1) T2(/3):= I 
#(J) 

2 

j=1 

If we represent /3 by means of the 0-basis 1, p, ..., p n- of F in the form 
/3 = Xn=1 flipi- 1, then T2(/3) becomes a positive-definite quadratic form 

(2) Q(1) = P3AO' 
in the coefficients PI .. , fin (1: (=311... f/n)). We note that in case /3 is integral, 
the inequality between arithmetic and geometric means yields T2(l) >/ n and 
T2(/3) = n if and only if /3 is a root of unity. 
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PROPOSITION 1. If the order Z[a] is isomorphic to the order Z[p], then Z[p] 
contains an element /P satisfying T2(/3) = T2(a). 

Proof. Let 4: Z[a] -- Z[p] be an isomorphism and +(a)= /3. Then ma(13) is 
zero, giving T2 (/) = T2 (a). ) 

PROPOSITION 2. For C E R '0 the order Z[p] contains at most finitely many 
elements P3 subject to T2(/3) < C. 

The proof of Proposition 2 is a consequence of the two subsequent algorithms 
which determine all solutions P3 E Z[p] satisfying T2(,/) < C. We only present the 
simplest version of the second algorithm, which is sufficient for most applications. 
For refinements we refer to [2]. 

We start by computing the coefficient matrix A = (a11) in R n In of the quadratic 
form (2). Clearly, 

n __ __ __ _ 

(3) aii = ,P~k ~) < i, j < n) 
k=1 

The aj are computed as floating-point numbers using good approximations for the 
zeros of mp. We recommend the use of the subroutine ZPOLR of the IMSL library 
for that purpose. It calculates p(l), ..., p(In) of a real polynomial of degree less than 
100 up to machine precision. The required computation time is practically negligible. 
(If all roots of mp(t) are known to be real, a Newton-Maehly-type procedure can 
also be implemented with ease.) 

Then the matrix A is decomposed into the product of a lower- and an upper-trian- 
gular matrix similar to Cholesky's method, which has the advantage of being fast 
and numerically stable. 

ALGORITHM A. 

Input. A positive-definite matrix A e R n xn; Q(x) := xAxtr. 

Output. An upper-triangular matrix A = (a11) E R InXn subject to 

n n 2 

Q(X) =E aU x + E, aijxi 
i=l J=?+1 

Steps. For i = 1, 2,..., n-I set: aji -a1J, a1J <- 
aij/a, (i + 1 < j < n) and 

for k = i + 1,.., n set: ak <- ak/- akia1 (k < 1 < n). 

We refer to that procedure of transforming a positive-definite quadratic form Q 
into a sum of squares as quadratic completion. 

Now all x E Z n subject to Q(x) < C are easily computed by Algorithm B [2]. 

ALGORITHM B. 

Input. Entries a11 (1 < i < j < n) of the output of Algorithm A and a positive 
constant C. 

Output. All X E Z n subject to x * 0 and Q(x) < C, as well as the values Q(x) for 
the quadratic form Q of (2). 

Step 1. (Initialization) Set i - n, T. *- C, Ub <- 0. 
Step 2. (Bounds for x1) Set S - (TI/lau)2, UBx1 *- - |1, 

XI , [-S - (1I - 1. 
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Step 3. (Increase xi) Set x, <- xi + 1. If x, < UBx, go to 5, else to 4. 
Step 4. (Increase i) Set i -- i + 1 and go to 3. 
Step 5. (Decrease i) If i = 1 go to 6; else set 

n 

<- i i-1, U, <-- ai1x1, Ti T+1 - ai+?,,+(xi+l +1) 
j=i?+1 

and go to 2. 
Step 6. (x valid?) For x = 0 terminate; else print x, -x and 

Q(x) = C - (T1 - all(Ul + x1)2) and go to 3. 

REMARKS. (i) The solution set of Algorithm B can be diminished by eliminating 
those x for which all coordinates, except the first one, are zero since the correspond- 
ing element of Z[p] is already in Z. 

(ii) By a slight modification of Steps 2, 6 the algorithm determines all x E Zn 

subject to Q(x) = C. Since this change only affects the inner loop i = 1, it does not 
yield a considerable decrease of the computation time, however. 

According to the proof of Proposition 1 there is an isomorphism between Z[p] 
and Z7[a] if the output of Algorithm B (for C = T2(a)) contains a vector x such that 
for 

n 

(4) ,8: LxIpi 
1=1 

the characteristic polynomial of 13 coincides with m0(t). But the characteristic 
polynomial f(t) = I ? clt"- + * +c, E Z[t] of 13 is easily computed upon 
calculating the power sums 

n 

(5) Sk = E :(J)k (I < k < n ) 
j=1 

and applying Newton's relations: 

1k-1 
(6) Ck = k- (-1) ik CiSk-i (1 < k < n; co:= 1). 

Though this method of determining isomorphisms is very easy, we need to discuss 
some of its details. Clearly, the running time of Algorithm B strongly depends on the 
size of C. If T2(a) is large, it is therefore advisable to compute a reduced basis 

01 = 19 029 ... (o.,n of Z[a] over Z and to construct epimorphisms of Z[p] onto Z[co,] 
(2 < i < n) until Q(o2, . i , O) = Q(a). Appropriate reduction methods are dis- 
cussed in [6]; usually LLL-reduction [3] is the best choice, though pair reduction is 
easier to implement. Obviously, the case of Q(a) being a primitive extension of Q is 
favorable to our method, contrary to other methods. 

Finally, we note that the suggested number-geometric method is also suitable for 
constructing isomorphisms between number fields, or orders of number fields, after 
slight modifications. 

3. Error Analysis. If the minimal polynomial 

(7) M (t) =t ?a t .n-i ? +a eZ[t] 

has nonreal roots, the entries aJ of (3) are algebraic integers which are, in general, 
not rational. Though the method developed in Section 2 seems to work without 
problems also in that case, an analysis of round-off errors is certainly required if we 
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want to prove that no isomorphism exists. (In the preceding section we assumed that 
this is the case if Algorithm B produces no output.) In the sequel we therefore 
discuss possible round-off errors for all computations with floating-point numbers. 

In the first step we calculate all zeros of mp(t) up to machine precision; in our 
case 14 digits. Known a priori estimates for the size of those zeros are: 

I P(k) I < min maxf Ia,|, 1, + I a,,-, ,1 + I al, 
(8) 

(8)~~~~~~~~~~ ~ 2max I a,l / < i A n) 

for all zeros p(k) (1 < k < n) of mp(t). Hence, for approximate solutions p(k) 

(p(k) = p(k) + E, jj _ 10-14) we obtain 

(9) p(k)' _ p(k)'-' +(i - I)p(k)'28 =:p(k)'' + E (2 < i < n - 1) 

and, setting Ekj1 = 0 (1 < k < n), 

ai1 = E( p(k)+ + Ek.) 
k=1 

n _ n 

(10) E p(k) (k)J + E f kj p + Ek,jPk) 
k=1 k=1 

n 

E (k )-' (k)J - + 6 

k=1 

We note that ij = 0 for i = 1 or j = 1, and that the worst error generally occurs for 
i =j = n. 

Example. By reducing p-if necessary-we can often obtain lp(k)I < 3 for n < 8 
and, therefore, -kn-1 of size at most (n - 1)3n-21-I. Hence, for n < 8 we find 

Innl < 2 10 -6. 

Remark. The huge increase of potential round-off errors for the powers of p(k) 

requires refined strategies for higher dimensions n. We only mention three possible 
improvements. The most obvious one is the computation of p(k) to higher precision. 
A little more difficult is the computation of mp,(t) for suitable exponents i (for 
example, i = 2,4,...) and the calculation of the zeros of these polynomials. We note 
that for 

n n 

mp(t) = a tn-i + E aitn-' (ao:= 1) 
i=O i=O 

n -i-=_0(2) n - i--1(2) 

we obtain 

mP2(t) = ( i ait(n -)/2) ( a= a ( -i)/2)j 

io 1=0 
n -i--_0(2) -i =_1(2) 

This observation also suggests to compute the zeros by Graeffe's method. Another 
safe way is to work with interval arithmetic. 

In analyzing Algorithm A we note that we can obtain lail < a,, (i + 1 < 1.< n) 
at each step by a suitable permutation of the coordinates of x. This is because the 
quadratic form under consideration is positive definite, which implies aiia1 > a, 
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(1 < i, / < n). The round-off error in calculating ai/ai, is therefore at most 
(18j,j + 18,11)/a,i. Hence the computation of akl is affected by an error less than 
8k1I + 18kil + 38,11 + 18il, hence bounded by 4 1I8nnlI 

Example (continued). Under the assumptions made above, the largest round-off 
error for any akl is bounded by 3 * 10-2. 

Knowing upper bounds for the round-off errors of the aj of the input of 
Algorithm B, it is now easy to compute correct bounds for each coordinate xi E 7, 
i.e., bounds which are large enough to guarantee that all solutions of the original 
problem will be among the output of that algorithm. 

We note that the estimates given in the example are very rough; usually much 
better estimates are obtained by calculating upper bounds for the 8,, explicitly. 

Finally, the values Sk of (5) are integers and can be easily computed from the 
(integers) Tr(p'-1) (1 < i < n) by integral arithmetic, and this also holds for the 
computation of the numbers Ck of (6). (All these calculations are based on mP(p) = 0, 
of course.) 

4. Applications and Examples. (i) According to Zimmer [8, pp. 53, 54], Hasse came 
up with the problem of whether zeros of the polynomials 

f1(t) = t5 - t3 -2t2 -2t - 1, f2(t) = t5 -2t4 + 2t3 - 3t2 + 6t - 5, 

f3(t) = t5 - t4 + t3 + t2- 2t + 1 

generate isomorphic fields. A solution was given by Zassenhaus and Liang [7]. The 
application of the method of Section 2 for mp(t) = f1(t) and C = 11 (an upper 
bound for T2(/), /B a zero of f2(t) or f3(t)) yields-up to sign-22 short vectors. 
Among them, G2 = p2 - p and a3 = -p4 + p3 + p + 1 satisfyfi(a,) = 0 (i = 2,3). 

(ii) In general, there are not many short vectors among the integers of an algebraic 
number field, even if the discriminant is large. We list the number of pairs of vectors 
N of the output of Algorithm B, as well as the computation time t in seconds, of 
three nth root fields: 

p -23 1/5 _12 1/9 51/11 

C 17.07 15.64 14.74 
N 1 1 1 
t 0.006 0.009 0.011. 

(iii) Searching for algebraic number fields with discriminants of small absolute 
value usually yields a couple of equations for which it must then be decided whether 
their zeros generate isomorphic fields. The results below are closely related to the 
determination of the minimum discriminant for fixed degree n = s + 2t, s the 
number of real, 2t the number of complex conjugates. From [5] it is known that an 
algebraic number field F of degree n and discriminant dF contains an irrational 
integer /3 subject to 
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where -y,, denotes Hermite's constant for positive-definite quadratic forms. In our 
list, N1 is the number of polynomials h(t) obtained by a minimum discriminant 
procedure, N2 the number of polynomials g(t) determined by our method for the 
input data mp(t) and C. Here, C is either T2(p) or obtained from (7) for the value 
of the minimum discriminant. N2 has to be expected to be larger than N1 because of 
the missing side condition 0 < -Tr(/) < n/2. In each case, all polynomials h(t) 
were among the g( ? t), and therefore the corresponding fields are isomorphic. 

The listed computation times refer to the calculation of the zeros of mp(t) (Step 
1), Algorithm A (Step 2), and Algorithm B (Step 3). 

Examples from [1], [4], [5]. 
Coeff. a,,..., an CPU-time in seconds 

n = s + 2 t of mP(t) C Step 1 Step 2 Step 3 N1 N2 

6 = 6 + 2 0 1,-7,-2,7,2,-1 14.01 0.002 0.003 0.002 0 0 
6 = 4 + 2 1 1,-2,-3,-1,2,1 11.94 0.002 0.003 0.009 9 11 
6 = 2 + 2 2 2,0,-3,0,2,-1 9.72 0.002 0.003 0.009 5 10 
6 = 0 + 2 3 0,1,1,-2,-1,1 8.10 0.001 0.004 0.015 6 18 

7 = 7 + 2 0 1,-6,-5,8,5,-2,-1 21.10 0.003 0.004 0.020 12 21 
7 = 3 + 2 * 2 0,0,0,-4,0,3,1 13.03 0.002 0.004 0.023 19 24 

We note that C = 14.01 is too small to obtain a generating polynomial in case 
n = s = 6. This is due to the presence of subfields (see [5]). The reason for the 
discrepancy between N1, N2 in the cases n = 6, s = 0, 2 is that several roots of a 
polynomial g(t) belong to Z[p]. 

All computations were carried out on the CDC Cyber 76 of the Rechenzentrum 
der Universitat zu Koln. 
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